13-12-2017 Data 26

Pagina Foglio

È il progetto Life Vitisom, che punta ad abbattere le emissioni di gas serra

Concime 4.0 nel vigne

Fertilizzanti tarati sull'esigenza reale delle viti

DI ARTURO CENTOFANTI

ItaliaOggi

agricoltura 4.0 entra in campo per una produzione sostenibile. E lo fa con Life Vitisom, il progetto europeo su emissioni di gas serra (GHG)

e fertilizzazione mirata. «L'obiettivo principale è quello di promuovere un approccio sostenibile alla gestione del suolo in viticoltura attraverso lo sviluppo, testing e scaleup di una tecnologia innovativa per la concimazione organica del vigneto, il rateo variabile. Questo metodo permette di gestire le distribuzioni sulla base di preesistenti

immagini del vigore del vigneto e calibrare l'apporto dei fertilizzanti chimici in base alle reali esigenze delle viti. Questa tecnologia non è tuttavia ad oggi ancora conosciuta per la concimazione organica del vigneto», ha spiegato Leonardo Valenti dell'Università di Milano alla presentazione di Life Vitisom che si è tenuta in Franciacorta. nell'azienda Berlucchi, partner del progetto. Altri obiettivi sono quelli di «promuovere un approccio sostenibile alla gestione del suolo in viticoltura, attraverso la valutazione e quantificazione degli impatti sul suolo (GHG, fertilità chi-

Il prototipo di fertilizzazione mirata in campo

mica e biologica) e sulla vite (equilibrio vegeto produttivo, qualità delle uve e dei vini), contribuire alla definizione di una visione completa riguardo alla strategie di gestione del suolo vitato, della matrice organica e delle buone pratiche in viticoltura». Quello che è emerso dall'incontro è che l'agricoltura sostenibile è l'unica via per il

futuro. Come ha evidenziato Patricia Laville dell'Institut International de la Recherche Agronomique secondo cui «le buone pratiche agricole e la gestione attiva dei sistemi agricoli offrono la possibilità di mitigazione e permettono di ridurre

le emissioni». E una corretta gestione del vigneto influisce non solo sulla qualità delle uve ma anche sugli assorbimenti di CÖ2 da parte della vite. Come sostiene Luca Tezza di **UniPd:** «L'andamento annuale dei flussi di CO2 mostra un assorbimento netto durante l'estate e un certo rilascio durante

l'inverno. I risultati ottenuti saranno di grande utilità per i viticoltori, in un'ottica di miglioramento dell'efficienza e della sostenibilità della filiera vitivinicola». Le ricerche hanno coinvolto Berlucchi, azienda certificata bio, che sta sperimentando la fertilizzazione organica guidata dalle mappe di vigoria. Tra i contributi dell'evento, patro-

cinato da Oiv, Dipartimento di Scienze Agrarie e Ambientali di Milano e Ordine degli Agronomi di Brescia, quelli di altri partner europei del progetto. Come quello presentato da Antonio Holgado-Cabrera dell'European Conservation Agriculture Federation per l'adattamento delle colture irrigue al cambiamento climatico «attraverso l'implementazione di pratiche di best management che includono i principi dell'Agricoltura conservativa». Maite Martinez-Eixarch dell'Institut Recerca I Tecnologia Agroalimentàries de Catalunya ha raccontato come fornire linee guida ai produttori di riso utili a ridurre le emissioni di metano. Stesso discorso, ma negli allevamenti italiani dove Laura Valli e Mariateresa Pacchioli del Centro Ricerche Produzioni Animali che con il Progetto Life Forage4 Climate hanno coinvolto 35 aziende per dimostrare come i sistemi foraggeri per la produzione del latte possono contribuire alla mitigazione del cambiamento climatico.

Codice abbonamento:

Ritaglio stampa ad uso esclusivo del destinatario, non riproducibile.