Methane emissions in Mediterranean rice fields: Ebro Delta Case

M. Martínez-Eixarch¹, C. Alcaraz¹, C. Ibáñez¹, J. Antonio Saldaña- De la Vega¹, J. Noguerol2, M. Viñas², X. Aranda¹, ¹IRTA- Ecosistemas Acuáticos, St. Carles de la Ràpita (Tarragona); ²IRTA-GIRO, ³IRTA-Horticultura

Ambiental (Caldes de Montbuí, Barcelona)

Workshop Guido Berluchhi

Borgonato di Corte Franca, December 5th, 2017

The Ebro Delta is one of the most important wetland complexes in the Mediterranean with 65% of its area covered by rice fields

Rice fields are crucial for preserving biodiversity of the surrounding natural wetlands and the local economy.

Paddy rice fields, considered as semi-natural wetlands, are the leading source of anthropogenic CH₄ emissions.

- \rightarrow Paddy rice cultivation represents 47 % of anthropogenic CH₄ emissions
- ➔ After harvest, straw is incorporated into the soil: soil accretion, carbon sequestration>> what is the C budget??

Projects conducted in IRTA for GHG mitigation

Main objectives:

- 1) To estimate GHG emissions in rice fields: temporal pattern and cumulative emissions.
- 2) To provide guidelines to rice farm sector to implement agronomic measure to reduce GHG emissions without yield penalties.
- > Agronomic and environmental factors:
 - LIFE EBRO-ADMICLIM
- Water management-based mitigation measures: Alternate wetting and drying systems (AWD)
 - GreenRice. Partners: UK (Universidad de Aberdeen), Francia (CIRAD, CFR), Italy (Universidad de Torino y Entecra), España (CRAG, IRTA)
 - INIA Cambio climático en arrozales (València), IFAPA (Sevilla), IRTA

CERICULTUR

FACCEJPI

www.greenrice.eu

Project Life EBRO-ADMICLIM

and the second

shi proposa providente filmation

inal Projecte accords processal. Documents: Estat Actual Sala de premoir Estinçois. P.A.O. Idoleno d'Amatges Contacte

LIFE EBRO-ADMICLIM (ENV/ES/001182)

El propezos ESRO-ADMICLIM (ENVES-001102) plantaja accorta pilor de motigical i adaptació al carea chinizo: al Deta de Pilire (catalunya, Sispanya), una pona moit vulterable a la pujada del minili del mar i a la

NOTICIES RELACIONADES

S'angega una campanya per reclamar que se solucioni la subsidencia der betta de Pibre, Lo instat lació d'una stroena de reflectors al territori permet mesurar percificament el seu ambruament

Life Ebro-Admiclim (2015-2018)- GHG emissions in rice.

- To estimate cumulative CH4 emissions and termporal pattern in rice fields.
- To determine main agronomic and environmental drivers of CH4 emissions.
- To provide agronomic mitigation measures to rice farm sector.

LIFE EBRO-ADMICLIM

Material and Methods (2015-2016)

Monthly sampling in 22 commercial fields in Ebre Delta

Rice fields are flooded from May to September (harvest) and left to progressively dry out over post-harvest period

→ After harvest, straw is incorporated

Data collection:

- O CH₄: non-steady closed chambers
- Physicochemical: Soil temperature Eh, pH, conductivity
- Agronomic traits

Gas sampling and analyses methodology

and Gransman of Catalonia

27/11/2017

144

1.8405

1.78

141

Análisis gases en el laboratorio: CROMATOGRAFIA DE GASES

Laboratorios IRTA/GIRO (Torre Marimón, Caldes de Montbui)

Generalitat de Catalunya Gracestrará of Catalonia

Temporal pattern of agronomic and environmental variables

2015.Temporal pattern of CH₄ emissions

70 % of CH4 emitted during post-harvest

Correlation among all the variables

Rice growing season

Correlation among all the variables

Post-harvest

Cumulative emissions of methane and seasonal pattern: 2016

OLOEY

& AGRICULTURE

2015 Mean CH ₄ emission	Mean ± SE		
rate			
(mg C-CH ₄ m ⁻² ha ⁻¹)			
Growing-season	2.71 ± 0.25		
Post-harvest	9.71 ± 1.60		
Annual	5.2 ± 0.62		

2016 Mean CH ₄ emission	Mean ± SE		
rate			
(mg C-CH ₄ m ⁻² ha ⁻¹)			
Growing-season	3.2 ± 0.61		
Post-harvest	10.1 ± 2.14		
Annual	6.1 ± 1.0		

Straw incorporation

Straw incorporated...

耶

Generalized Linear Model (GLMz)

model parameter	RICE GRO	OWING SEASON		POST-HARVEST		
	N=20			N=26		
	SP ß	Bias		SP ß	E	Bias
(Intercept)	1.000	3.670	-0.191	1.000	-6.918	-0.115
Soil Redox	1.000	-3.798	0.026	0.453	-1.551	-1.142
Soil Temperature	0.288	0.208	-2.977	1.000	4.771	-0.263
Soil pH	0.335	-0.766	-1.776	0.135	0.009	-218.89
Soil conductivity	0.379	-0.214	-1.400	0.230	0.221	-2.331
Plant cover	0.956	0.050	0.021	0.240	0.021	-3.820
Water level	1.000	3.884	0.103	0.985	-5.240	0.044
Air temperature	0.225	0.000	1721.8	0.203	-0.360	-3.823
1 month prior to CH4 sampling				0.993	0.788	-0.156
2 months prior to CH4 sampling	g Sesid			0.993	-0.001	2.457
3 months prior to CH4 samplin	g			0.993	-0.556	0.703
eneralitat de Catalunya overnment of Catalonia	Component + Devia	0 1 2 (Post straw)	3	Martínez	z-Eixarch et	al., in reviev

Growing season: Linear relationship between main drivers and CH4 emissions

Soil redox, water layer depth and plant cover are the main drivers.

Post-harvest: Linear relationship between main drivers and CH4 emissions

Deviance Partial Residuals for Soll_Temp.Termometer (Obs. Values)

Deviance Partial Residuals for Water_Level (Obs. Values)

- Temporal pattern of CH4 emission in Ebro Delta rice field follow a bi-modal distribution, with two peaks: in July/August and in October.
- En 2015, rice fields emitted *ca.* 6.600 Tm of CH₄ (*ca.* 0.2 Tg CO2-eq), 70% of which during the post-harvest. >> need of more studies on straw management strategies.
- Main drivers of CH4 emissions differ in the growing and postharvest seasons:
 - → Growing season : soil redox, water layer depth (positively) and plant cover.
 - Post-harvest: soil temperature, wáter layer depth (negatively) and Straw incorporation.

Thank you!