

LIFE+IPNOA (LIFE 11 ENV/IT/000302): sviluppo di prototipi innovativi per il monitoraggio e la mitigazione delle emissioni di N₂O dai suoli agricoli

LIFE+IPNOA: Improved flux Prototypes for N₂O emission from Agriculture

Strategies for the mitigation of nitrous oxide emission from agricultural soils

- LIFE11 ENV/IT/302
- Cost of project € 2.008.796
- Amount financed by the European Union € 995.948
- When: July 2012 November 2016
- Where: Tuscany Region
- Website: <u>www.ipnoa.eu</u>

emission from Agriculture

LIFE+IPNOA objective

To identify the best management practices for N₂O emissions from agriculture in Tuscany without affecting the crop yield

Why nitrous oxide (N_2O) ?

- ✓ Ozone depleting
- ✓ GWP
- ✓ Soil accounts for > 60% of all global N₂O sources
- ✓ In Italy: agricultural soils
 ~ 50% of tot. N₂O

LIFE+IPNOA activities

INVENTORY FOR THE IDENTIFICATION OF MAIN CROPPING SYSTEMS IN TUSCANY REGION

DEVELOPMENT OF THE PORTABLE INSTRUMENT AND THE CONTINUOUS MONITORING STATION

INSTRUMENTS VALIDATION

MONITORING OF SOIL EMISSIONS IN FIELD TRIALS (2 YEARS)

TERRITORIAL ANALYSIS OF N₂O MITIGATION SCENARIOS AT REGIONAL SCALE

INVENTORY FOR THE IDENTIFICATION OF MAIN CROPPING SYSTEMS IN TUSCANY REGION

Data source: ISTAT, 2010

DEVELOPMENT OF THE PORTABLE INSTRUMENT AND THE CONTINUOUS MONITORING STATION

The continuous monitoring station

2

DEVELOPMENT OF THE PORTABLE INSTRUMENT AND THE CONTINUOUS MONITORING STATION

Portable instrument

2

......

Chamber is closed manually to the ground, using a collar, and it is connected to the mobile instrument with a 20 m tube. Each measure lasts 2-3 minutes.

> Sampled gas is analyzed through the analyzers placed in the mobile instrument for CO2, CH4 and N2O concentration.

> > The increment of concentration in the chamber is showed in real time on a smartphone, connected by Bluetooth. It is possible to calculate first estimation of flux in the field.

3.

Data are moved to a computer and analyzed through the software Flux revision.

The flux data are analyzed through statistical procedures.

Plots are produced to present the results of the monitoring campaign.

- Easterbush international campaign organized by InGOS "Integrated non-CO₂ greenhouse gas observing system"
- Validation at INRA
- > Cross validation between the continuous monitoring station and the portable instrument

Chamber validation

"N₂O chamber intercomparison campaign" at Hyttiala Forestry Field Station, Finland, InGOS project.

Some results:

- Good performance of the chamber
- Linear regression of N₂O flux: 0.84 0.91
- Leakage test: 52.9 ppb/h

MONITORING OF SOIL EMISSIONS IN FIELD TRIALS (2 YEARS)

• •

IPNO

LOCATION OF TWO EXPERIMENTAL SITES IN TUSCANY

Field trials at CIRAA - PISA

Field trials at CATES – CESA, Arezzo

MONITORING OF SOIL EMISSIONS IN FIELD TRIALS (2 YEARS)

Monitoring protocol

- November 2013 October 2015
- Frequency every 15 days, 2 times a week after nitrogen fertilizations, 4 replicates for each treatment
- 20-30 dates per crop per year → 6400 sampling points!

MONITORING OF SOIL EMISSIONS IN FIELD TRIALS (2 YEARS)

Main results of field trials

Summary of results based on average cumulative N₂O emissions recorded during crop growing period

Agricultural practices	BMPs	Mitigation potential	Effect on crop yield
Tillage	Ploughing → Minimum tillage	-60% faba bean, -25% sunflower	+35% faba bean -2% sunflower
Nitrogen fertilization	-30% nitrogen rate	-30% on all the fertilized crops	-12% durum wheat and tomato -2/4% maize and sunflower
Irrigation	-50% irrigation volume	-30% tomato in fertigation	-8% tomato

LARGE INTERANNUAL VARIABILITY DUE TO ENVIRONMENTAL CONDITIONS !!!

On DURUM WHEAT -41 % $\rm N_2O$ of emission saving from 170 to 110 kg N ha $^{-1}$

Improved flux Prototypes for N₂O emission from Agriculture

TERRITORIAL ANALYSIS OF N₂O MITIGATION

SCENARIOS AT REGIONAL SCALE

Best Management Practices IPNOA

Improved flux Prototypes for N₂O emission from Agriculture

A.P.	SPECIFIC ASPECT	EFFECTIVENESS	RECOMMENDED PRACTICE
NITROGEN FERTILIZATION	Nitrogen fertilizer rate	***	Calculate the rate according to the crop needs.
	Fertilizer placement	**	Apply the fertilizer near the plants and, if possible, buried.
	Distribution period	**	Apply the fertilizer when it is most needed by the crop.
	Fertilizer type	**	$N_2 O$ can potentially be mitigated with the use of slow-release fertilizers or fertilizers with added nitrification inhibitors.
TILLAGE	Tillage techniques	•	Reduce the tillage depth in sandy or loamy soils. Clay soils must be well drained to avoid compaction and stagnation.
	Water amount	••	Calculate the water amount in relation to the crop needs (water balance).
	Irrigation techniques	**	Use irrigation systems that ensure a good uniformity of water distribution and a good irrigation efficiency.
CROPS MANAGEMENT	Crop rotation	**	Involve in the rotation poliennial crops (forage crops) and crops with a low nitrogen requirement (leguminous).
	Cover crops	•	Cultivate cover crops in the interval between two main crops.
	Crop residues	**	Incorporate crop residues into the soil, avoiding deep tillage with leguminous residues.
FIELD HYDRAULICS AND WATER MANAGEMENT	Ensure the maintenance of the infrastructure controlling the field hydraulics		Maintain the effectiveness of infrastructure to ensure the water drainage.

Dissemination

Farmers Farmer associations Policy makers National and Regional agencies Local authorities Research Institutions Environmental Organizations Private Companies Schools

PNO

Workshops & meetings

Thanks for your attention!

Giorgio Virgili, Simona Bosco, Iride Volpi, Nicoletta Nassi o Di Nasso, Ricardo Villani, Giorgio Ragaglini, Cristiano Tozzini, Simone Neri, Federica Mattei, Luca Ferrante, Davide Continanza, Patricia Laville, Stefania Nuvoli, Luigi Fabbrini, Enrico Bonari

