

Analisi qualitativa e quantitativa dei composti bioattivi in estratti di Cardo e valutazione delle loro proprietà benefiche

Dott.ssa Giulia Graziani

Dipartimento di Farmacia – Università degli studi di Napoli «Federico II»

Il cardo è una specie erbacea perenne in natura, annuale in coltura (genere carduus, famiglia Asteracee) nativa delle aree mediterranee, coltivata sin dai tempi dei romani.

All'interno della specie distinguiamo:

C. cardunculus var. sylvestris Lam (cardo selvatico)

C. cardunculus var. altilis DC (cardo coltivato)

C. cardunculus subsp scolymus (L) Hegi (carciofo)

Bianco avorio

Gigante di Romagna

Spagnolo

Tre interessanti varietà di cardo

Viene consumato (sia crudo che cotto) tradizionalmente per le sue caratteristiche organolettiche ma anche per quelle salutistiche e nutrizionali per i suoi effetti:

- Ipoglicemizzanti
- Epatoprotettivi
- Antiinfiammatori
- Antitumorali
- Antivirali ed antibatterici
- Antiossidanti

Taylor & Francis

ORIGINAL PAPER

Anti-adipogenic activity of Carduus crispus and its constituent apigenin in 3T3-L1 adipocytes by downregulating PPARy and C/EBPa

Yoo Na Hong1 · Jaemoo Chun1 · Yeong Shik Kim1

Food Research International 100 (2017) 822-831

Contents lists available at ScienceDirect

Food Research International

journal homepage: www.elsevier.com/locate/foodres

Characterization of four wild edible Carduus species from the Mediterranean region via phytochemical and biomolecular analyses

Arianna Marengo a, b,c, Andrea Maxia a, Cinzia Sanna a, Cinzia M. Bertea b,c, Carlo Bicchic, Mauro Ballero^a, Cecilia Cagliero^c, Patrizia Rubiolo^c

International Journal of Environmental Health Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cije20

Determination of biological activity of Carduus lanuginosus: an endemic plant in Turkey

Kadriye Özcan

Pharmaceutical Chemistry Journal, Vol. 51, No. 12, March, 2018 (Russian Original Vol. 51, No. 12, December, 2017)

EVALUATION OF POLYPHENOL AND FLAVONOID PROFILES AND THE ANTIOXIDANT EFFECT OF CARDUUS ACANTHOIDES HYDROALCOHOLIC EXTRACT COMPARED WITH VACCINIUM MYRTILLUS IN AN ANIMAL MODEL OF DIABETES MELLITUS

R. M. Varut,1,8 C. E. Gîrd,2 L. T. Rotaru,3 M. C Varut,1 and C. G. Pisoschi1

Journal homepage: www.fia.usv.ro/fiajournal Journal of Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania Volume XVIII. Issue 2 - 2019, pag. 130 - 135

FOOD AND ENVIRONMENT SAFETY

STUDY OF VOLOVATIC (CARDUUS GLAUCINUS) ACTIVE PRINCIPLES FOR POTENTIAL USE AS A MEDICINAL PLANT Ofelia ARVINTE1, *Liliana NOROCEL1, Sonia AMARIE11

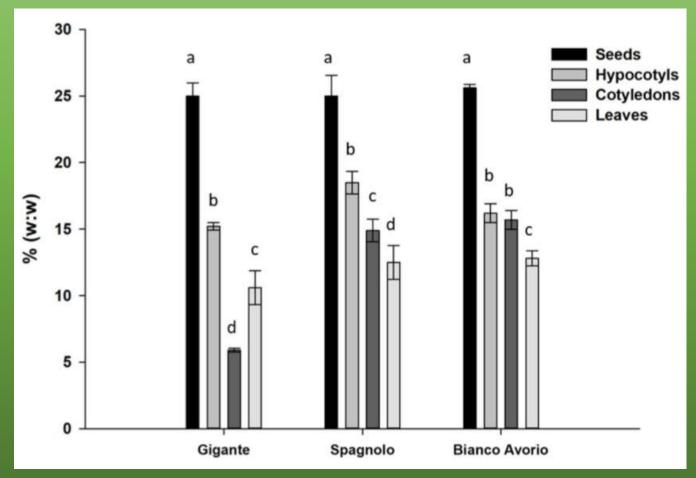
Pharmacogn. Mag.

ORIGINAL ARTICLE

Phenolic Profile and In vitro Antioxidant Activity of Endemic **Bulgarian Carduus Species**

Ivanka Dimitrova-Dyulgerova, Iliya Zhelev¹, Dasha Mihaylova²

Le proprietà biologiche e nutraceutiche di questa pianta sono associate alla presenza di diverse classi di metaboliti secondari:


- Flavonoids
- phenolic acids (acidi caffeoyl-chinici)
- Lignans
- Coumarins
- Alkaloids
- Sterols
- triterpenes

L'obiettivo del progetto BOBCAT è quello di ingegnerizzare colture cellulari di cardo per la produzione di acidi grassi, cellulosa e composti bioattivi ed utilizzare approcci sostenibili per la crescita cellulare su larga scala mediante l'utilizzo di sottoprodotti dell'industria agro alimentare. Tale approccio biotecnologico favorirà l'ottenimento di:

- ✓ Composti bioattivi per applicazioni cosmetiche
- ✓ Lignina, cellulosa e acidi grassi
- ✓ Proteine ed energia per l'alimentazione animale

Per favorire la selezione del genotipo e del tessuto da cui produrre colture cellulari è stata effettuata una caratterizzazione del profilo metabolico :

Valutazione quantitativa grasso in tre tre genotipi di cardo

Graziani G, Docimo T et al. 2020, Antioxidants, 9(11), 1096

Valutazione del profilo di acidi grassi nei lipidi estratti da tre genotipi di cardo mediante analisi GC-MS

	SEEDS			HYPOCOTYLS			COTYLEDONS			LEAVES		
Fatty acids	Gigante	Spagnolo	B. avorio	Gigante	Spagnolo	B. avorio	Gigante	Spagnolo	B. Avorio	Gigante	Spagnolo	B. Avorio
Pentadeconoic (C15:0)	0.123c	0.283a	0.173b	0.172b	0.182a	0.143c	1.852a	0.578c	0.711b	0.985a	0.441c	0.611b
Palmitic (C16:0)	59.868a	44.265b	56.708a	49.361a	47.722a	40.791b	63.320a	44.594c	50.348b	44.484b	34.330c	61.643°
Margaric (C17:0)	0.694b	1.25a	0.797b	0.109a	0.117a	0.098ь	2.253a	0.639b	0.642b	0.882a	0.571b	0.608b
Nonadecanoic (C19:0)	0.013b	0.024a	0.0164	n.d.	n.d.	n.d.	n.d.	0.252	n.d.	0.289	n.d.	0.187
Arachidic (C20:0)	4.446ab	4.427a	3.4b	n.d.	n.d.	0.659	n.d.	8.176a	5.157b	7.635a	3.852c	5.309b
Behenic (C22:0)	0.634a	0.635a	0.489b	0.271b	0.431a	0.315ъ	1.976b	3.767a	1.459c	4.162a	2.103c	3.463b
Lignoceric (C24:0)	0.457a	0.246b	0.432a	0.326	n.d.	n.d.	2.508b	5.408a	0.979c	5.219b	n.d.	5.706°
Cerotic (C26:0)	0.052	n.d.	n.d.	n.d.	n.d.	n.d.	0.465a	4.414a	n.d.	3.977	n.d.	n.d.
Melissic (C30:0)	0.015	0.03	n.d.	n.d.	n.d.	0.282	n.d.	n.d.	0.557	n.d.	n.d.	n.d.
Palmitoleic (C16:1)	0.372b	0.816a	0.348b	n.d.	0.135	n.d.	0.607a	n.d.	0.439b	1.452a	0.420c	0.516b
Hexadicadienoic (C16:2)	0.006ъ	1.389a	0.0096	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	0.088	n.d.
Hexadicatrienoic (C16:3)	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	9.774	n.d.	n.d.	n.d.	n.d.	n.d.
Oleic (C18:1)	19.271a	18.395b	15.828c	6.54c	7.869b	12.278a	n.d.	9.737a	8.240b	10.524b	15.519a	6.592c
Linoleic (C18:2)	13.684c	27.34a	21.212b	37.892b	38.954b	45.434a	8.935c	12.997b	24.714a	12.806ь	37.460a	9.197c
Linolenic (C18:3)	0.355a	0.441a	0.021b	5.259a	4.588b	n.d.	8.312ab	9.438a	6.644b	7.584a	5.215c	6.169b
Nonadecenoic (C19:1)	0.01	0.018	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Gadoleic (C20:1)	n.d.	0.441b	0.566a	0.07	n.d.	n.d.	n.d.	n.d.	0.110	n.d.	n.d.	n.d.

Analisi qualitativa composti bioattivi mediante UHPLC-HRMS-Orbitrap

Peack number	Polyphenol	Retention time (min)	Chemical Formula	Theoretical mass (m/z)	Measured mass (m/z)	Accura cy (ppm)
13	Luteolin	10.99	C15H10O6	285.04046	285.04071	0.88
15	Apigenin	11.45	C15H10O5	269.04555	269.04605	1.86
6	Diosmin	9.96	C28H32O15	607.16684	607.16821	2.26
5	Apigenin-8-C-glucoside	9.89	C21H20O10	431.09837	431.09973	3.15
11	(+/-) Naringenin	10.58	C15H12O5	271.06120	271.06165	1.66
4	Quercitin-3-O-glucoside	9.71	C21H19O12	463.08820	463.08926	2.29
12	Quercetin	10.71	C15H10O7	301.03538	301.03540	0.07
14	Kaempferol	11.31	C15H10O6	285.04046	285.04077	1.09
9	Myricetin	10.06	C15H10O8	317.03029	317.03119	2.84
7	Naringin	10.01	C27H32O14	579.54123	579.54162	0.67
10	Kaempferol-3-O-glucoside	10.11	C21H20O11	447.09328	447.09396	1.52
8	Luteolin-7-O-glucoside	10.05	C21H20O12	447.09328	447.09311	-0.38
3	p-Coumaric acid	8.66	C9H8O3	163.04007	163.04056	3.00
2	Chlorogenic acid	7.85	C16H18O9	353.08781	353.08856	2.12
1	4-Hydroxybenzoic acid	6.76	C7H6O3	137.02442	137.02489	3.43

Analisi quantitativa composti bioattivi mediante UHPLC-HRMS-Orbitrap

Phenolic compounds		SEEDS			HYPOCOTYLS			COTYLEDONS			LEAVES	
	Gigante	Spagnolo	B. avorio	Gigante	Spagnolo	B. avorio	Gigante	Spagnolo	B. Avorio	Gigante	Spagnolo	B. Avorio
4-hydroxy benzoic acid	2.750a	2.510b	2.040c	5.620a	3.760c	3.910b	12.592b	8.795c	16.771a	1.221a	0.661b	0.329c
Vitexin	107.300a	91.400b	83.700c	121.700b	111.710c	250.110a	350.432c	876.529b	1182.892a	528.396c	2100.344b	2107.906a
luteolin-7-O-glucoside	1.470b	2.760a	0.910c	1.610c	8.610b	12.700a	18.092c	34.299a	24.086b	81.922c	122.687a	88.773b
Naringin	10.900c	11.700b	14.400a	5.710c	51.700b	67.100a	14.599b	438.433a	436.022a	0.251b	0.357a	0.038c
chlorogenic acid	1036.310c	1201.990b	1430.460a	3461.130b	1006.780c	3735.790a	786.031a	769.301a	463.390b	1468.968b	2467.679a	2637.733a
coumaric acid	1.790a	1.840a	1.820a	3.620a	3.410a	3.720a	0.180a	0.080b	0.080b	0.080c	0.560a	0.200b
quercetin-3-glucoside	0.090c	0.270b	1.160a	0.700b	0.180c	1.180a	1.587b	2.670a	1.970b	3.386a	3.618a	2.050b
Diosmin	0.050a	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd	nd
kaempferol-3-O-glucoside	2.180a	2.140a	2.200a	4.910ab	4.460b	5.000a	0.420b	0.780a	0.860a	9.960a	9.960a	6.720b
Myricetin	0.440a	0.440a	0.450a	0.880a	0.890a	0.880a	2.470c	3.110b	8.470a	6.884a	6.063b	5.493c
Naringenin	1.730a	1.610b	1.680ab	3.130a	3.110a	3.110a	0.120a	0.000	0.040b	0.160c	0.320b	0.500a
Luteolin	0.320a	0.020b	0.020b	0.040b	0.200a	0.000b	11.700	37.137a	31.464b	56.040c	84.640a	72.671b
Kaempferol	0.340a	0.020b	0.020b	0.040b	0.240a	0.000	3.600c	4.300b	7.900a	4.800c	7.360a	5.780b
Quercetin	0.820	nd	nd	nd	1.640	nd	nd	0.020a	0.020a	36.580a	21.300b	14.160c
Apigenin	0.240a	0.040b	0.020c	0.000c	0.080a	0.040b	nd	4.580b	7.040a	2.260c	3.710b	8.080a
Total polyphenols	1166.730c	1316.740b	1538.880a	3609.090b	1196.770c	4083.540a	1201.823b	2180.034a	2181.005a	2200.908b	4829.259a	4950.433a

Valutazione dell'attività antiossidante in tre genotipi di cardo (in differenti tessuti)

		DPPH	ABTS	FRAP
		mmol trolox/kg	mmol trolox/kg	mmol trolox/kg
	GIGANTE	49.492 ± 0.275c	87.237 ± 3.312c	49.833 ± 1.283c
Seeds	SPAGNOLO	143.871 ± 0.942a	135.413 ± 1.119b	59.848 ± 3.340b
\mathbf{S}	BIANCO AVORIO	137.946 ± 0.265b	148.037 ± 1.127a	107.728 ± 1.303a
	GIGANTE	57.149 ± 0.377b	667.365 ± 1.036a	72.000 ± 0.954 b
coty	SPAGNOLO	37.543 ± 0.311c	317.206 ± 2.071c	57.939 ± 1.043c
Hypocotyls	BIANCO AVORIO	60.866 ± 0.106a	631.482 ± 8.285b	79.758 ± 2.694a
Suc	GIGANTE	19.192 ± 0.123c	487.277 ± 2.111b	47.776 ± 0.987c
eqc	SPAGNOLO	63.951 ± 0.543a	412.113 ± 0.112c	79.148 ± 2.876a
Cotyledons	BIANCO AVORIO	55.126 ± 0.156b	543.012 ± 0.765a	57.122 ± 1.832b
· · · · · · · · · · · · · · · · · · ·	GIGANTE	27.167 ± 0.551c	$510.315 \pm 0.765c$	$62.450 \pm 0.432c$
Leaves	SPAGNOLO	81.543 ± 0.111b	654.216 ± 0.981b	97.659 ± 0.876a
Le	BIANCO AVORIO	91.856 ± 0.116a	771.412 ± 0.665a	91.675 ± 0.761b

- I risultati finora ottenuti hanno fornito una completa e dettagliata analisi della composizione dei tessuti dei tre genotipi di cardo ed hanno dato indicazioni sull'accumulo dei composti bioattivi e sulla valenza nutraceutica, in generale, durante lo sviluppo della pianta.
- Tale studio inoltre fornisce chiare indicazioni per l'ottimizzazione dell'uso sostenibile di questa risorsa naturale.

Grazie per l'attenzione